84 research outputs found

    Towards a unified treatment of 3D display using partially coherent light

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2011.Cataloged from PDF version of thesis.Includes bibliographical references (p. 111-120).This thesis develops a novel method of decomposing a 3D phase space description of light into multiple partially coherent modes, and applies this decomposition to the creation of a more flexible 3D display format. Any type of light, whether it is completely coherent, partially coherent or incoherent, can be modeled either as a sum of coherent waves or as rays. A set of functions, known as phase space functions, provide an intuitive model for these waves or rays as they pass through a 3D volume to a display viewer's eyes. First, this thesis uses phase space functions to mathematically demonstrate the limitations of two popular 3D display setups: parallax barriers and coherent holograms. Second, this thesis develops a 3D image design algorithm based in phase space. The "mode-selection" algorithm can find an optimal holographic display setup to create any desired 3D image. It is based on an iterative algebraic-rank restriction process, and can be extended to model light with an arbitrary degree of partial coherence. Third, insights gained from partially coherent phase space representations lead to the suggestion of a new form of 3D display, implemented with multiple time-sequential diffracting screens. The mode-selection algorithm determines an optimal set of diffracting screens to display within the flicker-fusion rate of a viewer's eye. It is demonstrated both through simulation and experiment that this time-sequential display offers improved performance over a fixed holographic display, creating 3D images with increased intensity variation along depth. Finally, this thesis investigates the tradeoffs involved with multiplexing a holographic display over time with well-known strategies of multiplexing over space, illumination angle and wavelength. The examination of multiplexing tradeoffs is extended into the incoherent realm, where comparisons to ray-based 3D displays can hopefully offer a more unified summary of the limitations of controlling light within a volume.by Roarke Horstmeyer.S.M

    Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue

    Get PDF
    In the field of biomedical optics, optical scattering has traditionally limited the range of imaging within tissue to a depth of one millimetre. A recently developed class of wavefront-shaping techniques now aims to overcome this limit and achieve diffraction-limited control of light beyond one centimetre. By manipulating the spatial profile of an optical field before it enters a scattering medium, it is possible to create a micrometre-scale focal spot deep within tissue. To successfully operate in vivo, these wavefront-shaping techniques typically require feedback from within the biological sample. This Review summarizes recently developed 'guidestar' mechanisms that provide feedback for intra-tissue focusing. Potential applications of guidestar-assisted focusing include optogenetic control over neurons, targeted photodynamic therapy and deep tissue imaging

    Wide-field, high-resolution Fourier ptychographic microscopy

    Get PDF
    We report an imaging method, termed Fourier ptychographic microscopy (FPM), which iteratively stitches together a number of variably illuminated, low-resolution intensity images in Fourier space to produce a wide-field, high-resolution complex sample image. By adopting a wavefront correction strategy, the FPM method can also correct for aberrations and digitally extend a microscope’s depth of focus beyond the physical limitations of its optics. As a demonstration, we built a microscope prototype with a resolution of 0.78 µm, a field of view of ∼120 mm^2 and a resolution-invariant depth of focus of 0.3 mm (characterized at 632 nm). Gigapixel colour images of histology slides verify successful FPM operation. The reported imaging procedure transforms the general challenge of high-throughput, high-resolution microscopy from one that is coupled to the physical limitations of the system’s optics to one that is solvable through computation

    Quantitative phase imaging via Fourier ptychographic microscopy

    Get PDF
    Fourier ptychographic microscopy (FPM) is a recently developed imaging modality that uses angularly varying illumination to extend a system’s performance beyond the limit defined by its optical components. The FPM technique applies a novel phase-retrieval procedure to achieve resolution enhancement and complex image recovery. In this Letter, we compare FPM data to theoretical prediction and phase-shifting digital holography measurement to show that its acquired phase maps are quantitative and artifact-free. We additionally explore the relationship between the achievable spatial and optical thickness resolution offered by a reconstructed FPM phase image. We conclude by demonstrating enhanced visualization and the collection of otherwise unobservable sample information using FPM’s quantitative phase

    Characterization of spatially varying aberrations for wide field-of-view microscopy

    Get PDF
    We describe a simple and robust approach for characterizing the spatially varying pupil aberrations of microscopy systems. In our demonstration with a standard microscope, we derive the location-dependent pupil transfer functions by first capturing multiple intensity images at different defocus settings. Next, a generalized pattern search algorithm is applied to recover the complex pupil functions at ~350 different spatial locations over the entire field-of-view. Parameter fitting transforms these pupil functions into accurate 2D aberration maps. We further demonstrate how these aberration maps can be applied in a phase-retrieval based microscopy setup to compensate for spatially varying aberrations and to achieve diffraction-limited performance over the entire field-of-view. We believe that this easy-to-use spatially-varying pupil characterization method may facilitate new optical imaging strategies for a variety of wide field-of-view imaging platforms

    Aperture scanning Fourier ptychographic microscopy

    Get PDF
    Fourier ptychographic microscopy (FPM) is implemented through aperture scanning by an LCOS spatial light modulator at the back focal plane of the objective lens. This FPM configuration enables the capturing of the complex scattered field for a 3D sample both in the transmissive mode and the reflective mode. We further show that by combining with the compressive sensing theory, the reconstructed 2D complex scattered field can be used to recover the 3D sample scattering density. This implementation expands the scope of application for FPM and can be beneficial for areas such as tissue imaging and wafer inspection

    High numerical aperture Fourier ptychography: principle, implementation and characterization

    Get PDF
    Fourier ptychography (FP) utilizes illumination control and computational post-processing to increase the resolution of bright-field microscopes. In effect, FP extends the fixed numerical aperture (NA) of an objective lens to form a larger synthetic system NA. Here, we build an FP microscope (FPM) using a 40X 0.75NA objective lens to synthesize a system NA of 1.45. This system achieved a two-slit resolution of 335 nm at a wavelength of 632 nm. This resolution closely adheres to theoretical prediction and is comparable to the measured resolution (315 nm) associated with a standard, commercially available 1.25 NA oil immersion microscope. Our work indicates that Fourier ptychography is an attractive method to improve the resolution-versus-NA performance, increase the working distance, and enlarge the field-of-view of high-resolution bright-field microscopes by employing lower NA objectives
    • …
    corecore